A team of Clemson University researchers wants to protect humans and other mammals from the debilitating and even deadly effects of African sleeping sickness.

Image/CDC
Image/CDC

James Morris, a Clemson professor in the College of Science’s department of genetics and biochemistry, said that studying the cause of the disease is vital because, although the transmission of African sleeping sickness by tsetse flies has been studied for more than 100 years, the secret to the underlying parasite’s success remains largely a mystery.

“There are a number of questions about how the parasite grows and develops in the fly and then gets transmitted to humans and other mammals,” said Morris, who is on the faculty of Clemson’s Eukaryotic Pathogens Innovation Center.

A paper titled “Glucose Signaling is Important for Nutrient Adaptation During Differentiation of Pleomorphic African Trypanosomes” was recently published on the American Society of Microbiology’s mSphere site. It focuses on the biological cues that “tell” the parasite – the African trypanosome (Trypanosoma brucei) – to change life cycle stages as it moves from host to host.

Oral sleeping sickness drug, fexinidazole, approved by European agency

“One of the key things that happens is that, as the parasite is floating around in (mammalian) blood, it perceives its neighbors and says ‘oh, there are a lot of us,’ and becomes a different form that is ready to go into a fly, if the fly were to happen to bite that person,” Morris said. “That form that’s ready for life in the fly doesn’t grow – it’s not a growing form – it’s really sitting there, waiting to be taken up by a fly. Once it passes into the fly, though, it begins to grow again. It becomes a form that can live in the fly, and that’s the insect-stage form, or procyclic form.”

Read more at Clemson University