Everyone has heard of common germs like E.coli or influenza, but what about Streptobacillus moniliformis or Capnocytophaga? If not treated quickly, both can kill people within days. But they are so rare that doctors and labs probably have never seen them and may mistake them for more common diseases like meningitis. Enter MicrobeNet, an innovative online tool designed by the Centers for Disease Control and Prevention (CDC) that, since 2013, has helped laboratorians and doctors get the information they need to accurately diagnose causes of disease faster and save lives. 

Three individual Elizabethkingia anophelis colonies growing next to each other on blood agar. Photo courtesy of the Centers for Disease Control and Prevention Special Bacteriology Reference Lab.
Three individual Elizabethkingia anophelis colonies growing next to each other on blood agar.
Photo courtesy of the Centers for Disease Control and Prevention Special Bacteriology Reference Lab.

MicrobeNet provides laboratorians with unprecedented access to CDC’s virtual microbe library of more than 2,400 rare and emerging infectious bacteria and fungi at no cost. The recent multi-state outbreak of Elizabethkingia in Wisconsin, Illinois and Michigan underscores the need for a tool like MicrobeNet in diagnostic laboratories. Hospitals and health departments using MicrobeNet can identify rare bacteria like Elizabethkingia quicker, and know they’re comparing their results to the most comprehensive and accurate disease database available. 

In partnership with Bruker Corp., CDC has recently added a new module to MicrobeNet that allows labs to search the protein signatures of the bacteria and compare them to the rare pathogens in CDC’s MicrobeNet library by using Bruker’s MALDI Biotyper systems. Using MALDI to test is extremely fast and cheaper to run than many other types of testing, making the technology increasingly popular among labs. The new MicrobeNet module will be immediately available to laboratorians and clinicians using the Bruker system in labs nationwide. Until the addition of the MALDI library, MicrobeNet offered two ways to search pathogens: by DNA sequence or biochemical tests (chemical reactions caused by the bacteria). 

MicrobeNet can dramatically improve the health of people in the United States and around the world by cutting the time for testing from about a week to a few hours. 

“MicrobeNet has the potential to revolutionize public health,” said John R. McQuiston, PhD, team lead for CDC’s Special Bacteriology Reference Laboratory and CDC’s lead for MicrobeNet. “This system helps public health labs and hospitals quickly identify some of the most difficult pathogens to grow and detect. In turn, MicrobeNet will help treat patients faster and allow health departments to respond to public health emergencies more effectively.” 

Traditionally, clinicians or laboratorians who needed to identify a rare bacteria or fungi or to confirm an infectious disease diagnosis with one of these organisms needed to send a sample to CDC and await test results. With MicrobeNet, they can access the information they need immediately. 

One of MicrobeNet’s greatest advantages lies in allowing two-way communications between users and CDC staff who are experts in the diseases that users are searching. MicrobeNet allows state public health experts to monitor disease trends in their state in real time and recognize when those trends might indicate an outbreak. It also provides public health agencies with a valuable snapshot of nationwide disease trends and will help CDC identify multistate outbreaks and provide information to public health partners in the affected states. 

In addition to being faster, using the MALDI module in MicrobeNet offers dramatic cost savings for clinical and public health laboratories because they no longer will need to develop their own pathogen libraries. These laboratories will also have the assurance that their information has been confirmed by CDC experts. In addition, for many germs, MicrobeNet provides doctors with information about which antibiotics the bacteria are resistant to. By quickly identifying the species of bacteria, lab staff can pass this critical information to the doctors who can use it to help make a diagnosis and select the right treatment, thus reducing the risk of their patients developing drug-resistant infections.