A global team of investigators has identified a key protein involved in Hantavirus Pulmonary Syndrome (HPS), a serious and sometimes fatal respiratory disease, according to research published in the journal Nature.


Specifically, a cell-surface receptor protein called protocadherin-1 (PCDH1), commonly associated with human asthma, is responsible for facilitating lung cell infection and triggering HPS.

For decades, scientists have been attempting to identify the host molecules that mediate hantavirus infection and lead to HPS, which has a case fatality rate of 35-40 percent. Currently there are no licensed vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease, which is transmitted to humans by infected rodents.

The study was co-led by John M. Dye, Ph.D, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID); Kartik Chandran, Ph.D, Albert Einstein College of Medicine (AECM); Thijn R. Brummelkamp, Ph.D., Netherlands Cancer Institute; and Zhongde Wang, Ph.D., Utah State University.

Through a genetic screen, the research team discovered that new world hantaviruses found in North and South America (Sin Nombre virus and Andes virus, respectively) were unable to infect cells when PCDH1 was “knocked out.” Furthermore, when hamsters were depleted of PCDH1, then challenged with Andes virus, they were largely resistant to infection and lung injury.

“Our animal studies established that PCDH1 is essential for lung infection with new world hantaviruses, providing us with a viable target for blocking the disease,” said co-first author and USAMRIID senior staff scientist Andrew S. Herbert, Ph.D.

Pathogenic hantaviruses first emerged in the United States in 1993, and USAMRIID played a key role in that discovery. In the midst of an unexplained outbreak of severe respiratory distress in several western states, USAMRIID and the Centers for Disease Control and Prevention worked jointly to confirm that the disease was caused by a hantavirus that had not previously been reported.

Bird flu: Griffith researchers closer to understanding how virus takes hold in humans

Notably, USAMRIID scientists went on to demonstrate that Syrian hamsters exposed to very low doses of Andes virus developed a disease that closely mimicked human HPS. This hamster model laid the groundwork for further research, including the study published today.

“The discovery of the cellular receptor for hantaviruses allows for rational and logical drug and antibody design,” said Dye. “Stopping the virus from infecting lung tissue provides a route to eliminating HPS.”

Animal viruses: New model predicts which may spread among humans

He also noted that the team’s work showcases the importance of international collaboration, and further demonstrates how basic science research discoveries are critical to the development of medical countermeasures around the world.

“While hantavirus infections are rare, they’re expected to increase in the coming decades as temperatures across the globe rise due to climate change,” commented AECM’s Chandran. “And we need to be better prepared for that possibility.”

Trypanosoma brucei: Clemson researchers unravel some mysteries of the parasite

Creutzfeldt-Jakob Disease: Research suggests the eye may be a source for early diagnosis

Norovirus: New study sheds light on outbreaks

Mayaro virus: Penn State researchers suggest spread into other areas of the world

Lymphatic filariasis: Single 3 pill ‘cocktail’ more effective at killing microscopic larval worms