Researchers from North Carolina State University have developed an algorithm that could give pig farms advance notice of porcine epidemic diarrhea virus (PEDV) outbreaks. The proof-of-concept algorithm has potential for use in real-time prediction of other disease outbreaks in food animals.

Image/Mutinka
Image/Mutinka

PEDV is a virus that causes high mortality rates in preweaned piglets. The virus emerged in the U.S. in 2013 and by 2014 had infected approximately 50 percent of breeding herds. PEDV is transmitted by contact with contaminated fecal matter.

Gustavo Machado, assistant professor of population health and pathobiology at NC State and corresponding author of a paper describing the work, developed a pipeline utilizing machine-learning techniques to create an algorithm capable of predicting PEDV outbreaks in space and time.

Machado, with colleagues from the University of Minnesota and Brazil’s Universidade Federal do Rio Grande do Sul, used weekly farm-level incidence data from sow farms to create the model. The data included all pig movement types, hog density, and environmental and weather factors such as vegetation, wind speed, temperature and precipitation.

Read more at NC State

Identifying outbreaks of Porcine Epidemic Diarrhea virus through animal movements and spatial neighborhoods