The search for a global Strep A vaccine has narrowed after researchers sequenced the DNA of more than 2,000 Group A Streptococcus samples from around the world. Researchers from the Wellcome Sanger Institute, the University of Cambridge, the Peter Doherty Institute for Infection and Immunity (Doherty Institute) in Australia, and the University of Queensland, Australia, revealed the differences between strains from more than 20 countries, and identified potential vaccine targets present across most strains.

Group-A Streptococcus (GAS)/CDC

Published today in Nature Genetics, the 10-year project found there were some molecular targets present in bacterial strains from all 20 countries, including the UK, Australia and India, which point to the possibility of developing an effective global vaccine against Strep A.

Group A Streptococcus bacteria, commonly known as Strep A, is one of the top 10 causes of death from infectious diseases worldwide. It is estimated to cause more than half a million deaths per year*, mainly in low-income regions of the world. It can cause many different infections, ranging from Strep throat, which is widely seen in the developed world, to scarlet fever and rheumatic heart disease, which are constantly present and considered endemic in lower-income areas of the globe.

There is no effective vaccine yet for Strep A, and the search for a vaccine is hampered by the variety of Strep A strains. Until now, most of the information has come from high-income areas such as the UK and US, however, very little is known about Strep A in the low-income areas of the world where it causes the most problems. This means that current vaccine candidates may not be effective in all areas.

Read more from the Wellcome Sanger Institute